Mammalian Metabolism of β-Carotene: Gaps in Knowledge
نویسندگان
چکیده
β-carotene is the most abundant provitamin A carotenoid in human diet and tissues. It exerts a number of beneficial functions in mammals, including humans, owing to its ability to generate vitamin A as well as to emerging crucial signaling functions of its metabolites. Even though β-carotene is generally considered a safer form of vitamin A due to its highly regulated intestinal absorption, detrimental effects have also been ascribed to its intake, at least under specific circumstances. A better understanding of the metabolism of β-carotene is still needed to unequivocally discriminate the conditions under which it may exert beneficial or detrimental effects on human health and thus to enable the formulation of dietary recommendations adequate for different groups of individuals and populations worldwide. Here we provide a general overview of the metabolism of this vitamin A precursor in mammals with the aim of identifying the gaps in knowledge that call for immediate attention. We highlight the main questions that remain to be answered in regards to the cleavage, uptake, extracellular and intracellular transport of β-carotene as well as the interactions between the metabolism of β-carotene and that of other macronutrients such as lipids.
منابع مشابه
Mammalian carotenoid absorption and metabolism*
Carotenoids are purported to provide widespread function in the biology and health of humans and other mammalian species. Provitamin A carotenoids, such as b-carotene, are valued in the diet of many mammals for their contribution as precursors of vitamin A and retinoids. Carotenoids may also function in the prevention of some chronic diseases by improving intercellular communication. enhancing ...
متن کاملProvitamin A metabolism and functions in mammalian biology.
Vitamin A deficiency is a major public health problem in developing countries. Some studies also implicate a suboptimal vitamin A intake in certain parts of the population of the industrialized world. Provitamin A carotenoids such as β-carotene are the major source for retinoids (vitamin A and its derivatives) in the human diet. However, it is still controversial how much β-carotene intake is r...
متن کاملCharacterization of human β,β-carotene-15,15'-monooxygenase (BCMO1) as a soluble monomeric enzyme.
The formal first step in in vitamin A metabolism is the conversion of its natural precursor β,β-carotene (C40) to retinaldehyde (C20). This reaction is catalyzed by the enzyme β,β-carotene-15,15'-monooxygenase (BCMO1). BCMO1 has been cloned from several vertebrate species, including humans. However, knowledge about this protein's enzymatic and structural properties is scant. Here we expressed h...
متن کاملTwo carotenoid oxygenases contribute to mammalian provitamin A metabolism.
Mammalian genomes encode two provitamin A-converting enzymes as follows: the β-carotene-15,15'-oxygenase (BCO1) and the β-carotene-9',10'-oxygenase (BCO2). Symmetric cleavage by BCO1 yields retinoids (β-15'-apocarotenoids, C20), whereas eccentric cleavage by BCO2 produces long-chain (>C20) apocarotenoids. Here, we used genetic and biochemical approaches to clarify the contribution of these enzy...
متن کاملStatistical Optimization of The Four Key Factors on β-Carotene Production by Dunaliella salina Under Laboratory Conditions Using Response Surface Methodology
During recent years, there was growing demand in using microalga valuable products such as β-carotene in health care. β-Carotene has anti-cancer and anti-aging properties for human. In Dunaliella salina cells, β-carotene has a major protecting role for biomolecules, when the production of reactive oxygen species elevated. In the present study, we investigated the influence of the four most effe...
متن کامل